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ABSTRACT

The development of an effective design strategy for surface-
mounted vortex generator arrays in a subsonic diffuser is described
in this report. This strategy uses the strengths of both compu-
tational and experimental analysos to determine beneficial vortex
generator locations and sizes. A parabolized Navier-Stokes solver,
RNS3D, was used to establish proper placement of the vortex gen-
erators for reduction in circumferential total pressure distortion.

Experimental measurements were used to determine proper vortex
generator sizing to minimize total pressure recovery losses associ-
ated with vortex generator device drag. The best rcstflt achieved
a 59% reduction in the distortion index DC60, with a 0.3% reduc-

tion in total pressure recovery.
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area-averaged total pressure recovery

vortex generator chordlength
centerbody or hub diameter (10.2 cms)
cowl diameter or duct width (25.4 cms)
circumferential distortion descriptor

vortex generator height
total pressure
dynamic pressure
cmssplane radial coordinate
cowl radius (12.7 cms)

vortex generator lateral spacing
sixty degree ring sector distortion
Cartesian coordinate system
vortex generator angle-of-attack
boundary layer thickness

crossplane circumferential coordinate
fluid density

Subscripts

rnin

ref
= minimum value

= reference conditions at $/D = -0.5

INTRODUCTION

Inlet and Diffuser Overview

The time constraints of an ever-shrinking world are the fun-

damental driving forces behind recent efforts to expand super-
sonic cruise flight capability for passenger aircraft. In the United
States this effort is being conducted through a joint partnership
of aerospace industry and NASA in the High Speed Research
(HSR) program. Current examples of supersonic cruise aircraft,
the Russian Tu-144 and the Anglo-French Concorde, are products
of extensive research efforts culminating nearly 30 years ago. The

challenge today, for aerospace engineers participating in the HSR
program, is to develop technology for a supersonic flight system
that is reliable, efficient, and environmentally acceptable in such a
manner that the focus of this effort, a High Speed Civil Transport
(or "HSCT'), will be a frequently-flown and profitable aircraft in
a way that the current examples are not.

To this end, one of the efforts that aeropropnision engineers
are focusing on is the design of the engine inlet. Both axisym-
metric and 2-dimensional types are being considered. The 2-D
candidate is referred to as a "bifurcated" inlet because it splits

the captured massflow for one engine and initially divides it into
two sueams. The advantage of such an arrangement over a 2-D
single-sueam inlet (both the Tu-144 and the Concorde are single-
stream types) is one of potential length (and thereby weight) re-
duction. A bifurcated design can be as much as 50% shorter than
a single-stream inlet designed for the same captured massflow
(Wasserbauer, 1993). Figure la illustrates the essential elements
of the bifurcated inlet using a mixed-compression example tested
at NASA-Lewis (Wasserbauer, 1993). A combination of oblique
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Figure 1 The bifurcated supersonic inlet.

shocks and internal compression comprise the upstream super-

sonic diffuser. This region of the inlet terminates in a normal

shock nominally located at the throat or upstream end of the sub-
sonic diffuser. An elaborate bleed system is used to control the

boundary layer and shock impingement locations in the supersonic

diffuser. Vortex generators and a bypass bleed system are used

to control boundary layer development in the subsonic diffuser.

Figure lb is an oblique view of the inlet (looking upstream) as

it would appear in a flight configuration mounted under a wing
.qh-face. One half of the bifurcated subsonic diffuser is highlighted

with heavy lines in Figure lb. Tnis type of diffuser is referred

to as a "transitioning S-diffu.w._ due to the cross-sectional area

change (from rectangular to semiannular) and a slight S-shaped
centerfine curvature.

Imlacoving Subaonic Diffumr Performance
with Vortex Generators

Like many other problems in engineering, diffuser design is a

balance of conflicting requirements. In general terms, subsonic

diffusers are designed to supply an airstream to an engine. The

properties of this airstream are constrained by the requirements

of the engine compressor. Some degree of fluid deceleration,

pressure rise, and flow uniformity at the compressor are typically

called for. Deceleration of the fluid to the desired velocity requires

an increase in cross-sectional are& If this process is to occur in

an efficient manner, the internal boundary layers must not thicken

excessively or detach from the flow surfaces. Working against

this are the length and cross-sectional geometry requirements of

the inlet and connected propulsion system. Shortening the diffuser

increases the adverse axial pressure gradient and the possibility

of global boundary layer separation; transitions in cross-sectional

shape and duct centertine curvature promote the development

of secondary flows. Once established, secondary flows have a

tendency to accumulate boundary layer fluid at discrete locations

thereby increasing the possibility of localized flow separation and

attendant flow non-uniformity.

Vortex generators are devices used to counter these problems.

The concept of using vortex generators to control boundary layer

flows was first developed as a means of enhancing diffuser per-

formance. The earliest studies were conducted by Taylor (1948),

Grose and Taylor (1954), and Pearcy (1961). At the most fun-

damental level, a vortex generator is simply a protrusion into a
fluid stream that sheds a vortex (or vortices) into the downstream

boundary layer. The basis of boundary layer control lies in the

convective nature of this shed vortex. The vortex m/xes the high

energy fluid of the freestream (or duct core flow) with the slower

moving fluid of the boundary layer. The boundary layer fluid

is effectively re-energized and is now more resistant to separa-
tion. This mixing mechanism of vor=x generator effectiveness

is long established. A good description is found in the report

of Schubauer and Spangenburg (1960). In addition to promoting

fluid mixing, vortex generators may also be used to counter the

detrimental effects of secondary flows. This mode of vortex gen-

erator effectiveness was recently explored using a diffusing S-duct

geometry in studies by Anderson and Levy (1991), Reichert and

Wendt (1996), and Anderson and Gibb (1996).

Diffuser performance is quantified in terms of recovery and dis-

tortion descriptors. Totalpressure recovery is a measure of the effi-

ciency of the diffu_on process, while totalpres=ure distorffon is a

measure of the flow uniformity suppfied to the engine. In optimiz-

ing diffuser performance tlLrongh a suitable appfication of vortex
generators we must first determine the balance required between

recovery and distortion of our inlet and engine system. Since each

vortex generator used represents an energy loss (through device

drag, a function of vortex generator frontal area) optimization re-

quires us to use the minimum number (or minimum total frontal
area) of vortex generators needed to obtain the required recovery

and distortion goals. How one achieve_ this number and pattern is

the essence of the design prob/em. The large number of geomet-

ric parameters in the vortex generator design and vortex generator

arrangement (or "array") make this problem difficult. Consider

Figure 2, which illustrates an array of common vane-type vortex

generators mounted on an internal flow surface. The geometric

elements of the individual vortex generators (chord, c; span, h;

angle-of-attack, a; eta) relate directly to the initial strength and

concentration of the shed vortices and so must be chosen care-

fully. Also of critical importance is the manner in which the

vortices interact downstream. This is partially determined by the



axial location of the array, zG, the initial spacing between vor-

tex generators, s, and the rotational orientation of the array, i.e.
whether vortices are shed counter-rotating or co-rotating with re-

spect to immediate neighbors. Limited experimental parametric
studies have been conducted to develop effective strategies for

vortex generator use in a diffusing S-duct 0teichert and Weodt,
1993, 1996) and a rectangular-to-semiannular diffuser similar to
the one illustrated in Figure lb (Brown et aL, 1968). Of greater
potential utility is the application of computational fluid dynam-
ics to the optimization problem. In particular, fast diffuser design
codes based on solutions to the parabolized (or "nxluced") Navier-

Stokes equations have the ability to run through large parametric

ranges in a time and cost effective manner.

Figure 2 The many parameters of vortex generator
design include elements of the array geometry.

The objective of this study is to develop a synergistic
computational-experimental approach to vortex generator use for
a transitioning S-diffuser. The code used is a parabolized code
known as RNS3D. It is a modification of the PEPSIG code based
on the stream function-vorticity formulation of the reduced Navier-

Stokes equations and was originally developed for internal flows
on nonorthogonal grids by Levy, Briley, and McDonald (1983).
Experimental measurements are conducted on a conr.sponding test
modeL These measurements are meant to "calibrate" both the

vortex generator model used in the code, and the code distor-
tion results, as well as track the losses incurred through vortex

generator use. Optimum diffuser performance results are not nec-
essarily achieved by the synthesis described herein, nor can we
show that this effort will achieve optimization; but the results ob-
taineddemonstrate large improvements and serve as a first step in

addressing this difficult design problem.

TOOLS AND PROCEDURES

Diffuser Definition

The rectangular-to-semiannular diffuser used in this study (des-

ignated "td118") is one of a series of geometrically similar ducts
designed by Anderson and Kapoor (1994). If the outer diameter of
the annular exit cross-section is D then the overall axial length-to-

diameter ratio is LID = 2.0. The exit-to-inlet cross-sectional area
ratio is A_/A_ = 1.51. Figure 3 provides three views of the td118
diffuser and assists in the followingmathematical description.

The diffuser maintains a width of D = 25.4 cms over its axial

length L = 50.8 cms. When viewed in profile we note that the
line that defines the top center of the duct is straight (no curvature
in the xl,x3 plane). The floor of the diffuser is of width D and
has no curvature in the z2, x3 plane. The coordinatesfor the
centerline of the diffuser floor are (Foster et aL, 1995):

5

•'o'E--_ = cij i ----1, 2, 3. (1)
j=o

The coordinate system definitions are provided in Figure 3. The
duct cross-seetiun is defined by a super-ellipse in a plane per-

pendicular to the centerline of Eq. (1). The triple (z4, xs,xs)
represents the orthogonal coordinate system (see Figure 3). The
equation for the duct cross-section is:

(2xs/D,_e. (_)B._) + = I, (2)

and the equation for the centerbody cross-sectional shape is:

2zs/D_eSa-(2zslD_nS=l, (3)
_: '\ Bs ,/

where the B_ are defined by equations having the form of Eq.

(1):
5

B_
.i-o

The constants cij from Eqs. (1) and (4) are tabulated in the

report of Foster et al. (1995).

Experimental Facility

Experimental measurements of the tall18 diffuser flowfield were
made at NASA Lewis Research Center using the Internal Fluid

Mechanics Facility (IFMF). This facility was designed to support
the research of a variety of internal flow configurations and is de-

scribed in detail by Porro et aL (1991). The facility in the vicinity
of the test section, as it is assembled for this test, is illustrated in

Figure 4. Laboratory air at atmospheric conditions flows into a
large settling plenum. Flow conditioning elements (honeycombs
and screens) are located in this plenum and are used to reduce
the turbulence levels of the incoming airstream. A pair of con-
traction ducts accelerates the flow supplied to a roughly constant

flow area spool section having a cross-section with the same di-
mensions as the diffuser throat. Static pressure instrumentation in

the spool section provides the reference throat Mach number for
the diffuser model located immediately downstream. Crossplane
measurements of diffuser exit plane total pressure are acquired by

two translating rakes of five-hole probes (3 tips per rake). These
rakes are similar to the rake described in the report of Wendt and
Reichert (1995). The calibration scheme and uncertainty of the

3



pressure measurements are discussed in the report of Reichert and 
Wendt (1994). The two rakes follow radial survey lines 90 de- 
grees apart and grid resolution is (At = 4 mm, A6 = So) in the 
Semiannular diffuser exit plane. Upon exiting the instrumentation 
duct the airstream is routed through a flexible steel hose to an 
exhaust plenum which is continuously evacuated. 

f 
i 

Figure 4 The diffuser test rig. 

The reference throat Mach number for this test is 0.79. The 
mass flow rate at this condition is approximately 3 kgdsec. The 
boundary layer at the throat is turbulent and uniform in thickness 

about the throat circumference with 6, , f /D x 0.01. The throat 
Reynolds number, based on the dimension D. is approximately 4 
million. The exit plane core Mach number has a nominal value 
of about 0.45. 

The delta-wing like vortex generators applied in this study rn 
illustrated in Figure 5. These devices are similar to the t a p e d  
fin first examined in the report of Schubauer and Spangenburg 
(1960). Each vortex generator will shed a single trailing axial 
vortex when its leading edge is aIigued with the flow as shown in 
Figwe 5. Thne geometrically similar tapered fins, differing only 

%&, LT Pp &&&y@ z~ w-4 ix Figiw 5. 

Luge: c=42mm 
Medim : e 128 mm we = 0.29 

Figure 5 Geometry of the tapered fin vortex generator. 

Computational Code 
The RNS3D code was developed primarily as a design and 

analysis tool to efficiently compute internal subsonic flows. It has 
been used in previous efforts to resolve complex thrwdiensional 
flows in various aerospace propulsion-related applications, and 
requires significantly less computational time than comparable 
full Navier-Stokes (FNS) codes (Anderson and Kapoor, 1994, 
Towne, 1984). The simplicity of the RNS3D code results, in 
part, from a decomposition of the velocity vector into primary 
and secondary components; it also neglects viscous and thennal 
diffusion in the streamwise k t i o n .  The primary velocity is 
obtained from the solution of the streamwise momentum equation 
and the secondary velocities 81t solved via a vorticity and stream 
function formulation. These equations rn approximated with 
finite differences and solved by forward spatial marching (Briley 
and McDonald, 1979, 1984, Levy et aL, 1980, 1983). 

The utility of RNS3D in this study is derived from its ability to 
model the convective effects of vortex generators on the diffuser 
flow field, without actually including the vortex generator geome- 
try in the diffuser computational grid The convective model used 
takes advantage of the vorticity and stream function formulation 
of the code's governing equations. The shed vortex is modelled 
by adding a source term to the vorticity transport equation at each 
grid point in the crossplane of the vortex generator. The strength 
of the source term is determined by assuming a circulation protile 
for the shed vortex, which, in tun, is a function of the vortex gen- 
erator chordlength. impinging flow conditions, and radial distance 
from the vortex generator. More information on this vortex gen- 
erator modelling procedure may be found in the reports of Kunik 
(1986) and Anderson and Gibb (1993). 

The computational mesh used here was developed by Anderson 
and Kapoor (1994). Since the duct is symmetric, only half of the 
duct, a 90' section, was computed. The transverse crossplanes 
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are perpendicular to the duct centerline and have 99 radial and 
49 circumferential points each. In the sheamwise (21) direction 
a constant cross-sectional area duct of length A21 f D  = 0.5 
is added at either end of the diffuser to satisfy the boundary 
condition requirements of the code. Streamwise grid resolution 
i s A z 1 / D = 0 . 0 1 3  inthediffumandAz~fD=O.O25inthe 
two coostant cross-sectional area ducts. The resulting grid has a 
total of 201 x 99 x 49 points. Flow field boundary conditions are 
matched to the previously discussed experimental conditions. 

I l2 

Figure 6 The experimental grid at the dilfuser 
exit showing l i s  of flow field symmetry. 

RESULTS 

Diffuser Performance Descriptor Definition 

The diffuser performance descriptors evaluated in this study are 
area-averaged total pressure recovery and circumferential distor- 
tion intensity. These descriptors are determined on a crossplane 
grid that covers the entire circular engine face. Figure 6 shows 
how flowfield symmetry is used in these evaluations. As an ex- 
ample, the upper half-cimle in Figure 6 illustrates the experimen- 
tal survey grid used in most test cases. Mirror image symmetry 
through the line Z1 is always assumed. For computations, and 
some experimental data. mirror image symmetry through the line 
Z2 is also used. Due to the geometry of the duct and vortex gen- 
erator arrays, symmetry through 12 is, in principle, appropriate for 
all test cases considered here. An area-average of a quantity 
over an annular section of angular extent A0 = b - a and radial 
extent AT = d - c is defined as: 

jpdp dr de 
(5) 

a c  D(a,b : c , d )  = 
2 r $ $ r  dr dB 

a c  

Area-averaged total pressure recovery, or “AATPEY is defined 
from Eq. (5 )  by letting P = p J p ,  ref. a = 0, b = 2r ,  c = d012, 
and d = Df2.  Thus we can write: 

In similar fashion, the circumferential distortion “‘DCW is defined 
as: 

where g is the dynamic pressure and pt(8,B + $ : 4, is 
the minimum value of p@, e + f : 4, f) occurring over the 
entire annular crossplane. 

The radial profile of circumferential distortion intensity, termed 
“smty4egree ring sector distortion” or ‘WEiGiY is &fined for 
a ring of radius ti and thickness dt: 

where a = 0, b = 2r, c = ri - drf2, d = T i  + dtf2, and 
occurring over the full circular ring. As an example, the exper- 
imental grid illustrated in Figure 6 is naturally divided into 18 
such rings. 

p (6 ,  I E : c, 6) min is &e z+izzq y&c O f F  (8, + s : c,  d )  
‘ 3  

Baseline Diffuser 
The term “baseline” refers to a td118 diffuser model without 

a surface-mounted vortex generator amy .  In the experimental 
program, two td118 models were tested with and without vortex 
generators. One model was constructed from plastic using a laser- 
stereolithography technique. The other model was milled from a 
block of aluminum alloy. Under normal operating conditions a 
pressure differential existed across the wall of the diffuser model. 
The plastic diffuser was found to undergo a small amount of wall 
deflection due to this p m u r e  loading. The deflection was greatest 
near the difFuser throat (where the Mach number is highest), and 
produced a thin region of vortical flow separation on the ramp 
surface of the plastic model. In the metal diffuser, which suffered 
no measurable deflection, the ramp boundary layer stagnated, 
but did not separate. Figure 7 compares ramp surface flow 
streamlines for both plastic and metal diffusers. This illustration 
was obtained from surface oil flow patterns. The region of 
separated or stagnated flow on the ramp was observed to be almost 
entirely suppressed when vortex generators were applied. 
Flow separation in the plastic diffuser produced thicker bound- 

ary layers on the ramp and centerbody surfaces. This can be seen 
in Figures Sa-b. which compare baseline exit plane total pres- 
sure contours of the plastic and metal diffusers, respectively. The 
thicker boundary layers are responsible for a degradation in the 
performance of the plastic model: 

AATPR, DC60 = 0.944,0.290 (plastic) 

AATPR, DC60 = 0.954,0.267 (metal) 

Figure 8c shows the total pressure contours from the RNS3D 
calculation; the corresponding performance descriptors are: 

(9) 

AATPR, DC60 = 0.953,0.065 (RNS3D) (10) 
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Figure 9 compares the corresponding radial profiles of 60DRSD.

In general terms, the code overpredicts the cowl boundary layer

thickness and somewhat underpre_cts the ramp boundary layer
thickness. This is evident in the distinct "two-lump" pattern pro-

duced by the calculation; the first (LHS) lump is produced pri-

marily by the ramp boundary layer, and the second (RIDS) lump

originates from the cowl boundary layer.

__..2.'_-_" o - . - ....

Flew

_1 I I , I
U 0.5 LO 1.5 Z@

F_jure 7 Baseline ramp sudace streamlines. Plastic
duct is top illustration, aluminum duct is bottom.

F'Kjure 8 Contour plots of total pressure ratio

(pt/pt,_1) in the exit plane of the diffuser.

_ O,OB t ......... , ......... , ......... , ......... , ......... , .........

|

0_ _ O.IO _ 0.80 _ 1_

__ 2n'D

Figure 9 Profiles of circumferential
distortion for the baseline diffuser.

Vortex Generator Design Sequence

The overall objective of vortex generator use in the tdll8
diffuser is to reduce the circumferential distortion of the duct while

minimizing the drag-related recovery losses. This process was

carried out in two parts:

1. The baseline total pressure contours (Figures 8a-c) were car_

fully studied. We then asked ourselves the question: "What

changes in these patterns would result in lower values of
circumferential distorfion._ Several concepts were consid-

ered. These concepts were implemented using the consid-

erable convective influence of the medium or large vortex

generators. Five trials were conducted in the plastic diffuser.
In addition to overall screening, the results were also used to

calibrate the vortex generator model in the code and to estab-
lish a means of performance comparison between computa-

tional and expezimental results. This means of comlntison is

the radial profile of 60DRSD. Of the 5 trials conducted, the

one producing the minimum amount of DC60 was chosen
for further refinemenL

2. In the second part, our aim was to minimize the recovery

losses. Using the pattern having the minimum value of DC60

established above, each large vofle_ generator was replaced

with a co-rotating pair or triple composed of small vortex

generators. Proper placement of these vortex generators was

established using the code. Many computational trials were

conducted, and the two refined patterns which produced the

most favorable profiles of 60DRSD were tested experimen-

tally in the aluminum diffuser.

The vortex generator array was designed for (and mounted at) a

single axial location: zl/D ----0.575 downstream of the diffuser

throat (see Fignre 3).

Figures 10a-e illustrate the exit plane total pressure results of

the five pattom trials conducted experimentally in the plastic dif-

fuser. The riOt-hand side of each contour plot illustrates the

experimental results and the left-hand side illustrates the compu-

tational mimic. Experimental values of AATPR and DC60 are

listed with each corresponding contour ploL

In the geometry of the tdll8 duct, the diffusion is provided

by the ramp floor "turning down" away from the stream. Thus

6



a)
_rq

Pattern #1

AATPR = 0.943
DC60 = 0.191

b) Pattern #2

AATPR -- 0.932
DC60 = 0.104

c) Pattern #3

AATPR = 0.935
DC60 = 0.210

I'_ r'-] I_ r"l

d) _Pa_m _

_]_[__ DC60 = 0.052

e) _Pa_"_ _

.,,  'rvR =0.927

Figure 10 Contours of total pressure ratio for the

trial vortex generator patterns in the plastic diffuser.

our first flow control concept was to use two pairs of downflow

vortices on the ramp to assist in turning the stream to follow the
surface contour of the duct. The terra "downflow vortex pair"

refers to the convective action of the shed vortices. The fluid

between the vortices in the pair is convected towards the wall

(the "downward" direction). Each downflow pair was centered
on the two streamwise channels createdby the diffusercowl and

centerbody surfaces. Pattern 1 (Figure 10a) used medium-sized

vortex generators, and Pattern 2 (Figure 10b) used large vortex

generators. Each pattern demonstrates an effective thinning of the

ramp boundary layer.

The second flow control concept tested is related to the per-

ceived beneficial action of the centerbody on the diffuser flow

field. The centerbody is designed to prevent the duct from overdif-

fusing and the ramp boundary layer from separating. Vortex gen-

erator Pattern3 (Figure lOc) uses two co-rotatingpairsof large

vortexgeneratorsto produce a region of strongdownflow on the

ramp centerline for an "enhanced centerbody" effect. The resulting

pattern did not significantly reduce the circumferential distortion.

The third flow control concept is similar to the first, but also

includesa downflow vortex pair(or pairs)on the cowl surface.

Pattern4 (Figure10d)has 3 pairsof largevortexgenerators(2on

the ramp surfaceas in Pattern2, and I on the cowl centerline).

Pattern5 (Figurefoe) has 5 pairsof vortex generators(2 large

pairson the ramp surfaceas in Pattern2, and 3 medium-sized

pairs equally spaced on the cowl surface). The downflow vortex

pairs placed on the cowl surface were found to effectively thin

the cowl boundary layer.
Figure 11 compares the 5 plastic duct experimental profiles

of 60DRSD to the computational profiles. As in the baseline

case, the experimentaland computational profilesdo not have

correspondingshapes;however, the trendin distortionreduction

(from Pattern 1 to Pattern 5) is reproduced in the computational

results.

Of the 5 trialsconducted above, Pattern4 represented thebeat

strategyforminimizingcircumferentialdistortion.Comparison of

Pattern 4 to the plastic diffuser baseline shows an 82% reduction

in DC60 paid for with a 1% loss in AATPR. A large penalty in

drag-related losseswas tied to the use of largevortex generators

in Pattern 4. To gain back a portion of the total pressure recovery

e_ am

es

......... I ......... = ......... , ......... = ......... . .........

•=- [ _=l,_=,-'_"
_- I- ....... !.,==.=#1
e_ [ --'-"" Pae.m_#2

r .........._mm#s

t I.mams==, IPlal_'l_J .°..-° .... -.

1
....... l_Ue_ OI

0._ ?" "-xx

"..,.

0.40 0.50 0._0 0.70 0._ 0.90 1.00

Dimensionless Radi_ 2r/D

Figure 11 A comparison of 60DRSD profiles

of the 5 trial vortex generator arrays.
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performance lost, we next replaced each large vortex generator in

4 with a set of small co-rotating vortex generators. Double

and triple sets were considered. The proper spacing between the

vortex generators was determined by running various trials with

RNS3D, and comparing the resulting profiles of 60DRSD. The

spacing ratio of Pattern 4 was e/D = 0.175, where s is the

distance between adjacent trailing edge tips of the tapered fin

vortex generators. The optimum spacing for small double sets was

determined to be s/D = 0.042, and for small triple sets s/D =

0.031. The resulting vortex generator arrays, Patterns 6 and 7,
were tested in the aluminum diffuser. The results are illustrated in

Figures 12a-b. Comparison of Pattern 6 to the aluminum diffuser

baseline indicates a 59% reduction in DC60 paid for with a 0.3%

loss in AATPR. Figure 13 plots the corresponding experimental

and computational profiles of 60DRSD for the results obtained

using vortex generators in the aluminum diffuser.

a) doubles _ _

Pattern #6

AATPR = 0.951

= 0.109

I Ib) triples ,_,_,_'r_" _'_

attera #7

AATPR = 0.949

.188

meat = O.O1

Figure 12 Exit plane contours of total pressure ratio for

vortex generator pattem refinement in the aluminum diffuser.

......... | ......... , ......... i ......... , ......... i .........
...... hltm'_ t_ It.N_ID

-- protein 41P/itS_D

,,==,-,,-- Ih,mm,n 41+ _

am, ...... Pmtem iI' _

_ t elm=mt_l _

Figure 13 A comparison of experimental and

computational profiles of 60DRSD for vortex generator

pattem refinement in the aluminum diffuser.

A comparison of the baseline flow fields in Figure 8 to the vor-

tox generator-influenced flow fields of Figmes 10 and 12 reveals

the considerable convective power of the vortices shed from the

tapered-fins. It is important to emphasize that the improvements

in distortion behavior represented by these figures were achieved

with only the simplest understanding and representation of the
convective nature of the shed vortices. The maximum benefit

possible, i.e. opti_.ation, will likely be achieved only with a

deeper undentanding of internal flows. This applies equally to

the flow problems generated unintentionally within the duct, and
the flow induced by devices (such as vortex generators) used to

cotmter them. The simple procedure and results described here

should provide further incentive for such efforts.

SUMMARY

Computational and experimental methods were used synergisti-

cally to develop a beneficial vortex generator design for the td118

transitioning S-shaped diffuser. The most beneficial configura-
tions are those which minimize both total presstwc distortion and

losses. The RNS3D code was used to screen several vortex gen-

erator patterns to determine the vortex generator placement which

produced minimum distortion in the diffuser exit plane flow field.

Experimental measurements were taken to find the vortex genera-

tor size required to minimize total pressure losses. The best result
achieved a 59% reduction in DC60 distortion with only a 0.3%

reduction in total pressure recovery.
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